前端面试大全ES6

前端面试题大全(ES6)

前端面试题类目分类

  • HTML5 + CSS3
  • JavaScript
  • Vue + Vue3
  • React
  • Webpack
  • 服务端

考点频率 :♥︎ 、 ♥︎ ♥︎、 ♥︎ ♥︎ ♥︎、 ♥︎ ♥︎ ♥︎ ♥︎、 ♥︎ ♥︎ ♥︎ ♥︎ ♥︎

♥︎ ♥︎ ♥︎ ♥︎ ♥︎ var、let、const之间的区别

一、var

在ES5中,顶层对象的属性和全局变量是等价的,用var声明的变量既是全局变量,也是顶层变量

注意:顶层对象,在浏览器环境指的是window对象,在 Node 指的是global对象

var a = 10;
console.log(window.a) // 10

使用var声明的变量存在变量提升的情况

console.log(a) // undefined
var a = 20

在编译阶段,编译器会将其变成以下执行

var a
console.log(a)
a = 20

使用var,我们能够对一个变量进行多次声明,后面声明的变量会覆盖前面的变量声明

var a = 20 
var a = 30
console.log(a) // 30

在函数中使用使用var声明变量时候,该变量是局部的

var a = 20
function change(){
    var a = 30
}
change()
console.log(a) // 20 

而如果在函数内不使用var,该变量是全局的

var a = 20
function change(){
   a = 30
}
change()
console.log(a) // 30 

二、let

letES6新增的命令,用来声明变量

用法类似于var,但是所声明的变量,只在let命令所在的代码块内有效

{
    let a = 20
}
console.log(a) // ReferenceError: a is not defined.

不存在变量提升

console.log(a) // 报错ReferenceError
let a = 2

这表示在声明它之前,变量a是不存在的,这时如果用到它,就会抛出一个错误

只要块级作用域内存在let命令,这个区域就不再受外部影响

var a = 123
if (true) {
    a = 'abc' // ReferenceError
    let a;
}

使用let声明变量前,该变量都不可用,也就是大家常说的“暂时性死区”

最后,let不允许在相同作用域中重复声明

let a = 20
let a = 30
// Uncaught SyntaxError: Identifier 'a' has already been declared

注意的是相同作用域,下面这种情况是不会报错的

let a = 20
{
    let a = 30
}

因此,我们不能在函数内部重新声明参数

function func(arg) {
  let arg;
}
func()
// Uncaught SyntaxError: Identifier 'arg' has already been declared

三、const

const声明一个只读的常量,一旦声明,常量的值就不能改变

const a = 1
a = 3
// TypeError: Assignment to constant variable.

这意味着,const一旦声明变量,就必须立即初始化,不能留到以后赋值

const a;
// SyntaxError: Missing initializer in const declaration

如果之前用varlet声明过变量,再用const声明同样会报错

var a = 20
let b = 20
const a = 30
const b = 30
// 都会报错

const实际上保证的并不是变量的值不得改动,而是变量指向的那个内存地址所保存的数据不得改动

对于简单类型的数据,值就保存在变量指向的那个内存地址,因此等同于常量

对于复杂类型的数据,变量指向的内存地址,保存的只是一个指向实际数据的指针,const只能保证这个指针是固定的,并不能确保改变量的结构不变

const foo = {};

// 为 foo 添加一个属性,可以成功
foo.prop = 123;
foo.prop // 123

// 将 foo 指向另一个对象,就会报错
foo = {}; // TypeError: "foo" is read-only

其它情况,constlet一致

四、区别

varletconst三者区别可以围绕下面五点展开:

  • 变量提升
  • 暂时性死区
  • 块级作用域
  • 重复声明
  • 修改声明的变量
  • 使用
变量提升
var `声明的变量存在变量提升,即变量可以在声明之前调用,值为`undefined

letconst不存在变量提升,即它们所声明的变量一定要在声明后使用,否则报错

// var
console.log(a)  // undefined
var a = 10

// let 
console.log(b)  // Cannot access 'b' before initialization
let b = 10

// const
console.log(c)  // Cannot access 'c' before initialization
const c = 10
暂时性死区

var不存在暂时性死区

letconst存在暂时性死区,只有等到声明变量的那一行代码出现,才可以获取和使用该变量

// var
console.log(a)  // undefined
var a = 10

// let
console.log(b)  // Cannot access 'b' before initialization
let b = 10

// const
console.log(c)  // Cannot access 'c' before initialization
const c = 10
块级作用域

var不存在块级作用域

letconst存在块级作用域

// var
{
    var a = 20
}
console.log(a)  // 20

// let
{
    let b = 20
}
console.log(b)  // Uncaught ReferenceError: b is not defined

// const
{
    const c = 20
}
console.log(c)  // Uncaught ReferenceError: c is not defined
重复声明

var允许重复声明变量

letconst在同一作用域不允许重复声明变量

// var
var a = 10
var a = 20 // 20

// let
let b = 10
let b = 20 // Identifier 'b' has already been declared

// const
const c = 10
const c = 20 // Identifier 'c' has already been declared
修改声明的变量

varlet可以

const声明一个只读的常量。一旦声明,常量的值就不能改变

// var
var a = 10
a = 20
console.log(a)  // 20

//let
let b = 10
b = 20
console.log(b)  // 20

// const
const c = 10
c = 20
console.log(c) // Uncaught TypeError: Assignment to constant variable
使用

能用const的情况尽量使用const,其他情况下大多数使用let,避免使用var

♥︎ ♥︎ ♥︎ ♥︎ ♥︎ ES6中数组新增了哪些扩展?

一、扩展运算符的应用

ES6通过扩展元素符...,好比 rest 参数的逆运算,将一个数组转为用逗号分隔的参数序列

console.log(...[1, 2, 3])
// 1 2 3

console.log(1, ...[2, 3, 4], 5)
// 1 2 3 4 5

[...document.querySelectorAll('div')]
// [<div>, <div>, <div>]

主要用于函数调用的时候,将一个数组变为参数序列

function push(array, ...items) {
  array.push(...items);
}

function add(x, y) {
  return x + y;
}

const numbers = [4, 38];
add(...numbers) // 42

可以将某些数据结构转为数组

[...document.querySelectorAll('div')]

能够更简单实现数组复制

const a1 = [1, 2];
const [...a2] = a1;
// [1,2]

数组的合并也更为简洁了

const arr1 = ['a', 'b'];
const arr2 = ['c'];
const arr3 = ['d', 'e'];
[...arr1, ...arr2, ...arr3]
// [ 'a', 'b', 'c', 'd', 'e' ]

注意:通过扩展运算符实现的是浅拷贝,修改了引用指向的值,会同步反映到新数组

下面看个例子就清楚多了

const arr1 = ['a', 'b',[1,2]];
const arr2 = ['c'];
const arr3  = [...arr1,...arr2]
arr1[2][0] = 9999 // 修改arr1里面数组成员值
console.log(arr3) // 影响到arr3,['a','b',[9999,2],'c']

扩展运算符可以与解构赋值结合起来,用于生成数组

const [first, ...rest] = [1, 2, 3, 4, 5];
first // 1
rest  // [2, 3, 4, 5]

const [first, ...rest] = [];
first // undefined
rest  // []

const [first, ...rest] = ["foo"];
first  // "foo"
rest   // []

如果将扩展运算符用于数组赋值,只能放在参数的最后一位,否则会报错

const [...butLast, last] = [1, 2, 3, 4, 5];
// 报错

const [first, ...middle, last] = [1, 2, 3, 4, 5];
// 报错

可以将字符串转为真正的数组

[...'hello']
// [ "h", "e", "l", "l", "o" ]

定义了遍历器(Iterator)接口的对象,都可以用扩展运算符转为真正的数组

let nodeList = document.querySelectorAll('div');
let array = [...nodeList];

let map = new Map([
  [1, 'one'],
  [2, 'two'],
  [3, 'three'],
]);

let arr = [...map.keys()]; // [1, 2, 3]

如果对没有 Iterator 接口的对象,使用扩展运算符,将会报错

const obj = {a: 1, b: 2};
let arr = [...obj]; // TypeError: Cannot spread non-iterable object

二、构造函数新增的方法

关于构造函数,数组新增的方法有如下:

  • Array.from()
  • Array.of()
Array.from()

将两类对象转为真正的数组:类似数组的对象和可遍历(iterable)的对象(包括 ES6 新增的数据结构 SetMap

let arrayLike = {
    '0': 'a',
    '1': 'b',
    '2': 'c',
    length: 3
};
let arr2 = Array.from(arrayLike); // ['a', 'b', 'c']

还可以接受第二个参数,用来对每个元素进行处理,将处理后的值放入返回的数组

Array.from([1, 2, 3], (x) => x * x)
// [1, 4, 9]
Array.of()

用于将一组值,转换为数组

Array.of(3, 11, 8) // [3,11,8]

没有参数的时候,返回一个空数组

当参数只有一个的时候,实际上是指定数组的长度

参数个数不少于 2 个时,Array()才会返回由参数组成的新数组

Array() // []
Array(3) // [, , ,]
Array(3, 11, 8) // [3, 11, 8]

三、实例对象新增的方法

关于数组实例对象新增的方法有如下:

  • copyWithin()
  • find()、findIndex()
  • fill()
  • entries(),keys(),values()
  • includes()
  • flat(),flatMap()
copyWithin()

将指定位置的成员复制到其他位置(会覆盖原有成员),然后返回当前数组

参数如下:

  • target(必需):从该位置开始替换数据。如果为负值,表示倒数。
  • start(可选):从该位置开始读取数据,默认为 0。如果为负值,表示从末尾开始计算。
  • end(可选):到该位置前停止读取数据,默认等于数组长度。如果为负值,表示从末尾开始计算。
[1, 2, 3, 4, 5].copyWithin(0, 3) // 将从 3 号位直到数组结束的成员(4 和 5),复制到从 0 号位开始的位置,结果覆盖了原来的 1 和 2
// [4, 5, 3, 4, 5] 
find()、findIndex()

find()用于找出第一个符合条件的数组成员

参数是一个回调函数,接受三个参数依次为当前的值、当前的位置和原数组

[1, 5, 10, 15].find(function(value, index, arr) {
  return value > 9;
}) // 10
findIndex`返回第一个符合条件的数组成员的位置,如果所有成员都不符合条件,则返回`-1
[1, 5, 10, 15].findIndex(function(value, index, arr) {
  return value > 9;
}) // 2

这两个方法都可以接受第二个参数,用来绑定回调函数的this对象。

function f(v){
  return v > this.age;
}
let person = {name: 'John', age: 20};
[10, 12, 26, 15].find(f, person);    // 26
fill()

使用给定值,填充一个数组

['a', 'b', 'c'].fill(7)
// [7, 7, 7]

new Array(3).fill(7)
// [7, 7, 7]

还可以接受第二个和第三个参数,用于指定填充的起始位置和结束位置

['a', 'b', 'c'].fill(7, 1, 2)
// ['a', 7, 'c']

注意,如果填充的类型为对象,则是浅拷贝

entries(),keys(),values()

keys()是对键名的遍历、values()是对键值的遍历,entries()是对键值对的遍历

for (let index of ['a', 'b'].keys()) {
  console.log(index);
}
// 0
// 1

for (let elem of ['a', 'b'].values()) {
  console.log(elem);
}
// 'a'
// 'b'

for (let [index, elem] of ['a', 'b'].entries()) {
  console.log(index, elem);
}
// 0 "a"
includes()

用于判断数组是否包含给定的值

[1, 2, 3].includes(2)     // true
[1, 2, 3].includes(4)     // false
[1, 2, NaN].includes(NaN) // true

方法的第二个参数表示搜索的起始位置,默认为0

参数为负数则表示倒数的位置

[1, 2, 3].includes(3, 3);  // false
[1, 2, 3].includes(3, -1); // true
flat(),flatMap()

将数组扁平化处理,返回一个新数组,对原数据没有影响

[1, 2, [3, 4]].flat()
// [1, 2, 3, 4]

flat()默认只会“拉平”一层,如果想要“拉平”多层的嵌套数组,可以将flat()方法的参数写成一个整数,表示想要拉平的层数,默认为1

[1, 2, [3, [4, 5]]].flat()
// [1, 2, 3, [4, 5]]

[1, 2, [3, [4, 5]]].flat(2)
// [1, 2, 3, 4, 5]

flatMap()方法对原数组的每个成员执行一个函数相当于执行Array.prototype.map(),然后对返回值组成的数组执行flat()方法。该方法返回一个新数组,不改变原数组

// 相当于 [[2, 4], [3, 6], [4, 8]].flat()
[2, 3, 4].flatMap((x) => [x, x * 2])
// [2, 4, 3, 6, 4, 8]
flatMap()`方法还可以有第二个参数,用来绑定遍历函数里面的`this

四、数组的空位

数组的空位指,数组的某一个位置没有任何值

ES6 则是明确将空位转为undefined,包括Array.from、扩展运算符、copyWithin()fill()entries()keys()values()find()findIndex()

建议大家在日常书写中,避免出现空位

五、排序稳定性

sort()默认设置为稳定的排序算法

const arr = [
  'peach',
  'straw',
  'apple',
  'spork'
];

const stableSorting = (s1, s2) => {
  if (s1[0] < s2[0]) return -1;
  return 1;
};

arr.sort(stableSorting)
// ["apple", "peach", "straw", "spork"]

排序结果中,strawspork的前面,跟原始顺序一致

♥︎ ♥︎ ♥︎ ♥︎ ♥︎ ES6中对象新增了哪些扩展?

一、属性的简写

ES6中,当对象键名与对应值名相等的时候,可以进行简写

const baz = {foo:foo}

// 等同于
const baz = {foo}

方法也能够进行简写

const o = {
  method() {
    return "Hello!";
  }
};

// 等同于

const o = {
  method: function() {
    return "Hello!";
  }
}

在函数内作为返回值,也会变得方便很多

function getPoint() {
  const x = 1;
  const y = 10;
  return {x, y};
}

getPoint()
// {x:1, y:10}

注意:简写的对象方法不能用作构造函数,否则会报错

const obj = {
  f() {
    this.foo = 'bar';
  }
};

new obj.f() // 报错

二、属性名表达式

ES6 允许字面量定义对象时,将表达式放在括号内

let lastWord = 'last word';

const a = {
  'first word': 'hello',
  [lastWord]: 'world'
};

a['first word'] // "hello"
a[lastWord] // "world"
a['last word'] // "world"

表达式还可以用于定义方法名

let obj = {
  ['h' + 'ello']() {
    return 'hi';
  }
};

obj.hello() // hi

注意,属性名表达式与简洁表示法,不能同时使用,会报错

// 报错
const foo = 'bar';
const bar = 'abc';
const baz = { [foo] };

// 正确
const foo = 'bar';
const baz = { [foo]: 'abc'};

注意,属性名表达式如果是一个对象,默认情况下会自动将对象转为字符串[object Object]

const keyA = {a: 1};
const keyB = {b: 2};

const myObject = {
  [keyA]: 'valueA',
  [keyB]: 'valueB'
};

myObject // Object {[object Object]: "valueB"}

三、super关键字

this关键字总是指向函数所在的当前对象,ES6 又新增了另一个类似的关键字super,指向当前对象的原型对象

const proto = {
  foo: 'hello'
};

const obj = {
  foo: 'world',
  find() {
    return super.foo;
  }
};

Object.setPrototypeOf(obj, proto); // 为obj设置原型对象
obj.find() // "hello"

四、扩展运算符的应用

在解构赋值中,未被读取的可遍历的属性,分配到指定的对象上面

let { x, y, ...z } = { x: 1, y: 2, a: 3, b: 4 };
x // 1
y // 2
z // { a: 3, b: 4 }

注意:解构赋值必须是最后一个参数,否则会报错

解构赋值是浅拷贝

let obj = { a: { b: 1 } };
let { ...x } = obj;
obj.a.b = 2; // 修改obj里面a属性中键值
x.a.b // 2,影响到了结构出来x的值

对象的扩展运算符等同于使用Object.assign()方法

五、属性的遍历

ES6 一共有 5 种方法可以遍历对象的属性。

  • for…in:循环遍历对象自身的和继承的可枚举属性(不含 Symbol 属性)
  • Object.keys(obj):返回一个数组,包括对象自身的(不含继承的)所有可枚举属性(不含 Symbol 属性)的键名
  • Object.getOwnPropertyNames(obj):回一个数组,包含对象自身的所有属性(不含 Symbol 属性,但是包括不可枚举属性)的键名
  • Object.getOwnPropertySymbols(obj):返回一个数组,包含对象自身的所有 Symbol 属性的键名
  • Reflect.ownKeys(obj):返回一个数组,包含对象自身的(不含继承的)所有键名,不管键名是 Symbol 或字符串,也不管是否可枚举

上述遍历,都遵守同样的属性遍历的次序规则:

  • 首先遍历所有数值键,按照数值升序排列
  • 其次遍历所有字符串键,按照加入时间升序排列
  • 最后遍历所有 Symbol 键,按照加入时间升序排
Reflect.ownKeys({ [Symbol()]:0, b:0, 10:0, 2:0, a:0 })
// ['2', '10', 'b', 'a', Symbol()]

六、对象新增的方法

关于对象新增的方法,分别有以下:

  • Object.is()
  • Object.assign()
  • Object.getOwnPropertyDescriptors()
  • Object.setPrototypeOf(),Object.getPrototypeOf()
  • Object.keys(),Object.values(),Object.entries()
  • Object.fromEntries()
Object.is()

严格判断两个值是否相等,与严格比较运算符(===)的行为基本一致,不同之处只有两个:一是+0不等于-0,二是NaN等于自身

+0 === -0 //true
NaN === NaN // false

Object.is(+0, -0) // false
Object.is(NaN, NaN) // true
Object.assign()
Object.assign()`方法用于对象的合并,将源对象`source`的所有可枚举属性,复制到目标对象`target

Object.assign()方法的第一个参数是目标对象,后面的参数都是源对象

const target = { a: 1, b: 1 };

const source1 = { b: 2, c: 2 };
const source2 = { c: 3 };

Object.assign(target, source1, source2);
target // {a:1, b:2, c:3}

注意:Object.assign()方法是浅拷贝,遇到同名属性会进行替换

Object.getOwnPropertyDescriptors()

返回指定对象所有自身属性(非继承属性)的描述对象

const obj = {
  foo: 123,
  get bar() { return 'abc' }
};

Object.getOwnPropertyDescriptors(obj)
// { foo:
//    { value: 123,
//      writable: true,
//      enumerable: true,
//      configurable: true },
//   bar:
//    { get: [Function: get bar],
//      set: undefined,
//      enumerable: true,
//      configurable: true } }
Object.setPrototypeOf()

Object.setPrototypeOf方法用来设置一个对象的原型对象

Object.setPrototypeOf(object, prototype)

// 用法
const o = Object.setPrototypeOf({}, null);
Object.getPrototypeOf()

用于读取一个对象的原型对象

Object.getPrototypeOf(obj);
Object.keys()

返回自身的(不含继承的)所有可遍历(enumerable)属性的键名的数组

var obj = { foo: 'bar', baz: 42 };
Object.keys(obj)
// ["foo", "baz"]
Object.values()

返回自身的(不含继承的)所有可遍历(enumerable)属性的键对应值的数组

const obj = { foo: 'bar', baz: 42 };
Object.values(obj)
// ["bar", 42]
Object.entries()

返回一个对象自身的(不含继承的)所有可遍历(enumerable)属性的键值对的数组

const obj = { foo: 'bar', baz: 42 };
Object.entries(obj)
// [ ["foo", "bar"], ["baz", 42] ]
Object.fromEntries()

用于将一个键值对数组转为对象

Object.fromEntries([
  ['foo', 'bar'],
  ['baz', 42]
])
// { foo: "bar", baz: 42 }

♥︎ ♥︎ ♥︎ ♥︎ ♥︎ ES6中函数新增了哪些扩展?

一、参数

ES6允许为函数的参数设置默认值

function log(x, y = 'World') {
  console.log(x, y);
}

console.log('Hello') // Hello World
console.log('Hello', 'China') // Hello China
console.log('Hello', '') // Hello

函数的形参是默认声明的,不能使用letconst再次声明

function foo(x = 5) {
    let x = 1; // error
    const x = 2; // error
}

参数默认值可以与解构赋值的默认值结合起来使用

function foo({x, y = 5}) {
  console.log(x, y);
}

foo({}) // undefined 5
foo({x: 1}) // 1 5
foo({x: 1, y: 2}) // 1 2
foo() // TypeError: Cannot read property 'x' of undefined

上面的foo函数,当参数为对象的时候才能进行解构,如果没有提供参数的时候,变量xy就不会生成,从而报错,这里设置默认值避免

function foo({x, y = 5} = {}) {
  console.log(x, y);
}

foo() // undefined 5

参数默认值应该是函数的尾参数,如果不是非尾部的参数设置默认值,实际上这个参数是没发省略的

function f(x = 1, y) {
  return [x, y];
}

f() // [1, undefined]
f(2) // [2, undefined]
f(, 1) // 报错
f(undefined, 1) // [1, 1]

二、属性

函数的length属性

length将返回没有指定默认值的参数个数

(function (a) {}).length // 1
(function (a = 5) {}).length // 0
(function (a, b, c = 5) {}).length // 2

rest 参数也不会计入length属性

(function(...args) {}).length // 0

如果设置了默认值的参数不是尾参数,那么length属性也不再计入后面的参数了

(function (a = 0, b, c) {}).length // 0
(function (a, b = 1, c) {}).length // 1
name属性

返回该函数的函数名

var f = function () {};

// ES5
f.name // ""

// ES6
f.name // "f"

如果将一个具名函数赋值给一个变量,则 name属性都返回这个具名函数原本的名字

const bar = function baz() {};
bar.name // "baz"
Function`构造函数返回的函数实例,`name`属性的值为`anonymous
(new Function).name // "anonymous"

bind返回的函数,name属性值会加上bound前缀

function foo() {};
foo.bind({}).name // "bound foo"

(function(){}).bind({}).name // "bound "

三、作用域

一旦设置了参数的默认值,函数进行声明初始化时,参数会形成一个单独的作用域

等到初始化结束,这个作用域就会消失。这种语法行为,在不设置参数默认值时,是不会出现的

下面例子中,y=x会形成一个单独作用域,x没有被定义,所以指向全局变量x

let x = 1;

function f(y = x) { 
  // 等同于 let y = x  
  let x = 2; 
  console.log(y);
}

f() // 1

四、严格模式

只要函数参数使用了默认值、解构赋值、或者扩展运算符,那么函数内部就不能显式设定为严格模式,否则会报错

// 报错
function doSomething(a, b = a) {
  'use strict';
  // code
}

// 报错
const doSomething = function ({a, b}) {
  'use strict';
  // code
};

// 报错
const doSomething = (...a) => {
  'use strict';
  // code
};

const obj = {
  // 报错
  doSomething({a, b}) {
    'use strict';
    // code
  }
};

五、箭头函数

使用“箭头”(=>)定义函数

var f = v => v;

// 等同于
var f = function (v) {
  return v;
};

如果箭头函数不需要参数或需要多个参数,就使用一个圆括号代表参数部分

var f = () => 5;
// 等同于
var f = function () { return 5 };

var sum = (num1, num2) => num1 + num2;
// 等同于
var sum = function(num1, num2) {
  return num1 + num2;
};

如果箭头函数的代码块部分多于一条语句,就要使用大括号将它们括起来,并且使用return语句返回

var sum = (num1, num2) => { return num1 + num2; }

如果返回对象,需要加括号将对象包裹

let getTempItem = id => ({ id: id, name: "Temp" });

注意点:

  • 函数体内的this对象,就是定义时所在的对象,而不是使用时所在的对象
  • 不可以当作构造函数,也就是说,不可以使用new命令,否则会抛出一个错误
  • 不可以使用arguments对象,该对象在函数体内不存在。如果要用,可以用 rest 参数代替
  • 不可以使用yield命令,因此箭头函数不能用作 Generator 函数

♥︎ ♥︎ ♥︎ ♥︎ ♥︎ ES6中新增的Set、Map两种数据结构怎么理解?

Set是一种叫做集合的数据结构,Map是一种叫做字典的数据结构

什么是集合?什么又是字典?

  • 集合
    是由一堆无序的、相关联的,且不重复的内存结构【数学中称为元素】组成的组合
  • 字典
    是一些元素的集合。每个元素有一个称作key 的域,不同元素的key 各不相同

区别?

  • 共同点:集合、字典都可以存储不重复的值
  • 不同点:集合是以[值,值]的形式存储元素,字典是以[键,值]的形式存储

一、Set

Setes6新增的数据结构,类似于数组,但是成员的值都是唯一的,没有重复的值,我们一般称为集合

Set本身是一个构造函数,用来生成 Set 数据结构

const s = new Set();
增删改查

Set的实例关于增删改查的方法:

  • add()
  • delete()
  • has()
  • clear()
add()

添加某个值,返回 Set 结构本身

当添加实例中已经存在的元素,set不会进行处理添加

s.add(1).add(2).add(2); // 2只被添加了一次
delete()

删除某个值,返回一个布尔值,表示删除是否成功

s.delete(1)
has()

返回一个布尔值,判断该值是否为Set的成员

s.has(2)
clear()

清除所有成员,没有返回值

s.clear()
遍历

Set实例遍历的方法有如下:

关于遍历的方法,有如下:

  • keys():返回键名的遍历器
  • values():返回键值的遍历器
  • entries():返回键值对的遍历器
  • forEach():使用回调函数遍历每个成员

Set的遍历顺序就是插入顺序

keys方法、values方法、entries方法返回的都是遍历器对象

let set = new Set(['red', 'green', 'blue']);

for (let item of set.keys()) {
  console.log(item);
}
// red
// green
// blue

for (let item of set.values()) {
  console.log(item);
}
// red
// green
// blue

for (let item of set.entries()) {
  console.log(item);
}
// ["red", "red"]
// ["green", "green"]
// ["blue", "blue"]
forEach()`用于对每个成员执行某种操作,没有返回值,键值、键名都相等,同样的`forEach`方法有第二个参数,用于绑定处理函数的`this
let set = new Set([1, 4, 9]);
set.forEach((value, key) => console.log(key + ' : ' + value))
// 1 : 1
// 4 : 4
// 9 : 9

扩展运算符和 Set 结构相结合实现数组或字符串去重

// 数组
let arr = [3, 5, 2, 2, 5, 5];
let unique = [...new Set(arr)]; // [3, 5, 2]

// 字符串
let str = "352255";
let unique = [...new Set(str)].join(""); // '352'

实现并集、交集、和差集

let a = new Set([1, 2, 3]);
let b = new Set([4, 3, 2]);

// 并集
let union = new Set([...a, ...b]);
// Set {1, 2, 3, 4}

// 交集
let intersect = new Set([...a].filter(x => b.has(x)));
// set {2, 3}

// (a 相对于 b 的)差集
let difference = new Set([...a].filter(x => !b.has(x)));
// Set {1}

二、Map

Map类型是键值对的有序列表,而键和值都可以是任意类型

Map本身是一个构造函数,用来生成 Map 数据结构

const m = new Map()
增删改查

Map 结构的实例针对增删改查有以下属性和操作方法:

  • size 属性
  • set()
  • get()
  • has()
  • delete()
  • clear()
size

size属性返回 Map 结构的成员总数。

const map = new Map();
map.set('foo', true);
map.set('bar', false);

map.size // 2
set()

设置键名key对应的键值为value,然后返回整个 Map 结构

如果key已经有值,则键值会被更新,否则就新生成该键

同时返回的是当前Map对象,可采用链式写法

const m = new Map();

m.set('edition', 6)        // 键是字符串
m.set(262, 'standard')     // 键是数值
m.set(undefined, 'nah')    // 键是 undefined
m.set(1, 'a').set(2, 'b').set(3, 'c') // 链式操作
get()
get`方法读取`key`对应的键值,如果找不到`key`,返回`undefined
const m = new Map();

const hello = function() {console.log('hello');};
m.set(hello, 'Hello ES6!') // 键是函数

m.get(hello)  // Hello ES6!
has()

has方法返回一个布尔值,表示某个键是否在当前 Map 对象之中

const m = new Map();

m.set('edition', 6);
m.set(262, 'standard');
m.set(undefined, 'nah');

m.has('edition')     // true
m.has('years')       // false
m.has(262)           // true
m.has(undefined)     // true
delete()
delete`方法删除某个键,返回`true`。如果删除失败,返回`false
const m = new Map();
m.set(undefined, 'nah');
m.has(undefined)     // true

m.delete(undefined)
m.has(undefined)       // false
clear()

clear方法清除所有成员,没有返回值

let map = new Map();
map.set('foo', true);
map.set('bar', false);

map.size // 2
map.clear()
map.size // 0
遍历

Map 结构原生提供三个遍历器生成函数和一个遍历方法:

  • keys():返回键名的遍历器
  • values():返回键值的遍历器
  • entries():返回所有成员的遍历器
  • forEach():遍历 Map 的所有成员

遍历顺序就是插入顺序

const map = new Map([
  ['F', 'no'],
  ['T',  'yes'],
]);

for (let key of map.keys()) {
  console.log(key);
}
// "F"
// "T"

for (let value of map.values()) {
  console.log(value);
}
// "no"
// "yes"

for (let item of map.entries()) {
  console.log(item[0], item[1]);
}
// "F" "no"
// "T" "yes"

// 或者
for (let [key, value] of map.entries()) {
  console.log(key, value);
}
// "F" "no"
// "T" "yes"

// 等同于使用map.entries()
for (let [key, value] of map) {
  console.log(key, value);
}
// "F" "no"
// "T" "yes"

map.forEach(function(value, key, map) {
  console.log("Key: %s, Value: %s", key, value);
});

三、WeakSet 和 WeakMap

WeakSet

创建WeakSet实例

const ws = new WeakSet();

WeakSet 可以接受一个具有 Iterable 接口的对象作为参数

const a = [[1, 2], [3, 4]];
const ws = new WeakSet(a);
// WeakSet {[1, 2], [3, 4]}

APIWeakSetSet有两个区别:

  • 没有遍历操作的API
  • 没有size属性

WeackSet只能成员只能是引用类型,而不能是其他类型的值

let ws=new WeakSet();

// 成员不是引用类型
let weakSet=new WeakSet([2,3]);
console.log(weakSet) // 报错

// 成员为引用类型
let obj1={name:1}
let obj2={name:1}
let ws=new WeakSet([obj1,obj2]); 
console.log(ws) //WeakSet {{…}, {…}}

WeakSet 里面的引用只要在外部消失,它在 WeakSet 里面的引用就会自动消失

WeakMap

WeakMap结构与Map结构类似,也是用于生成键值对的集合

APIWeakMapMap有两个区别:

  • 没有遍历操作的API
  • 没有clear清空方法
// WeakMap 可以使用 set 方法添加成员
const wm1 = new WeakMap();
const key = {foo: 1};
wm1.set(key, 2);
wm1.get(key) // 2

// WeakMap 也可以接受一个数组,
// 作为构造函数的参数
const k1 = [1, 2, 3];
const k2 = [4, 5, 6];
const wm2 = new WeakMap([[k1, 'foo'], [k2, 'bar']]);
wm2.get(k2) // "bar"

WeakMap只接受对象作为键名(null除外),不接受其他类型的值作为键名

const map = new WeakMap();
map.set(1, 2)
// TypeError: 1 is not an object!
map.set(Symbol(), 2)
// TypeError: Invalid value used as weak map key
map.set(null, 2)
// TypeError: Invalid value used as weak map key

WeakMap的键名所指向的对象,一旦不再需要,里面的键名对象和所对应的键值对会自动消失,不用手动删除引用

举个场景例子:

在网页的 DOM 元素上添加数据,就可以使用WeakMap结构,当该 DOM 元素被清除,其所对应的WeakMap记录就会自动被移除

const wm = new WeakMap();
const element = document.getElementById('example');
wm.set(element, 'some information');
wm.get(element) // "some information"

注意:WeakMap 弱引用的只是键名,而不是键值。键值依然是正常引用

下面代码中,键值obj会在WeakMap产生新的引用,当你修改obj不会影响到内部

const wm = new WeakMap();
let key = {};
let obj = {foo: 1};

wm.set(key, obj);
obj = null;
wm.get(key)
// Object {foo: 1}

♥︎ ♥︎ ♥︎ ♥︎ ♥︎ 你是怎么理解ES6中 Promise的?使用场景?

一、介绍

Promise ,译为承诺,是异步编程的一种解决方案,比传统的解决方案(回调函数)更加合理和更加强大

在以往我们如果处理多层异步操作,我们往往会像下面那样编写我们的代码

doSomething(function(result) {
  doSomethingElse(result, function(newResult) {
    doThirdThing(newResult, function(finalResult) {
      console.log('得到最终结果: ' + finalResult);
    }, failureCallback);
  }, failureCallback);
}, failureCallback);

阅读上面代码,是不是很难受,上述形成了经典的回调地狱

现在通过Promise的改写上面的代码

doSomething().then(function(result) {
  return doSomethingElse(result);
})
.then(function(newResult) {
  return doThirdThing(newResult);
})
.then(function(finalResult) {
  console.log('得到最终结果: ' + finalResult);
})
.catch(failureCallback);

瞬间感受到promise解决异步操作的优点:

  • 链式操作减低了编码难度
  • 代码可读性明显增强

下面我们正式来认识promise

状态

promise对象仅有三种状态

  • pending(进行中)
  • fulfilled(已成功)
  • rejected(已失败)
特点
  • 对象的状态不受外界影响,只有异步操作的结果,可以决定当前是哪一种状态
  • 一旦状态改变(从pending变为fulfilled和从pending变为rejected),就不会再变,任何时候都可以得到这个结果
流程

认真阅读下图,我们能够轻松了解promise整个流程

二、用法

Promise对象是一个构造函数,用来生成Promise实例

const promise = new Promise(function(resolve, reject) {});
Promise`构造函数接受一个函数作为参数,该函数的两个参数分别是`resolve`和`reject
  • resolve函数的作用是,将Promise对象的状态从“未完成”变为“成功”
  • reject函数的作用是,将Promise对象的状态从“未完成”变为“失败”
实例方法

Promise构建出来的实例存在以下方法:

  • then()
  • catch()
  • finally()
then()

then是实例状态发生改变时的回调函数,第一个参数是resolved状态的回调函数,第二个参数是rejected状态的回调函数

then方法返回的是一个新的Promise实例,也就是promise能链式书写的原因

getJSON("/posts.json").then(function(json) {
  return json.post;
}).then(function(post) {
  // ...
});
catch

catch()方法是.then(null, rejection).then(undefined, rejection)的别名,用于指定发生错误时的回调函数

getJSON('/posts.json').then(function(posts) {
  // ...
}).catch(function(error) {
  // 处理 getJSON 和 前一个回调函数运行时发生的错误
  console.log('发生错误!', error);
});

Promise 对象的错误具有“冒泡”性质,会一直向后传递,直到被捕获为止

getJSON('/post/1.json').then(function(post) {
  return getJSON(post.commentURL);
}).then(function(comments) {
  // some code
}).catch(function(error) {
  // 处理前面三个Promise产生的错误
});

一般来说,使用catch方法代替then()第二个参数

Promise 对象抛出的错误不会传递到外层代码,即不会有任何反应

const someAsyncThing = function() {
  return new Promise(function(resolve, reject) {
    // 下面一行会报错,因为x没有声明
    resolve(x + 2);
  });
};

浏览器运行到这一行,会打印出错误提示ReferenceError: x is not defined,但是不会退出进程

catch()方法之中,还能再抛出错误,通过后面catch方法捕获到

finally()

finally()方法用于指定不管 Promise 对象最后状态如何,都会执行的操作

promise
.then(result => {···})
.catch(error => {···})
.finally(() => {···});
构造函数方法

Promise构造函数存在以下方法:

  • all()
  • race()
  • allSettled()
  • resolve()
  • reject()
  • try()
all()

Promise.all()方法用于将多个 Promise 实例,包装成一个新的 Promise 实例

const p = Promise.all([p1, p2, p3]);

接受一个数组(迭代对象)作为参数,数组成员都应为Promise实例

实例p的状态由p1p2p3决定,分为两种:

  • 只有p1p2p3的状态都变成fulfilledp的状态才会变成fulfilled,此时p1p2p3的返回值组成一个数组,传递给p的回调函数
  • 只要p1p2p3之中有一个被rejectedp的状态就变成rejected,此时第一个被reject的实例的返回值,会传递给p的回调函数

注意,如果作为参数的 Promise 实例,自己定义了catch方法,那么它一旦被rejected,并不会触发Promise.all()catch方法

const p1 = new Promise((resolve, reject) => {
  resolve('hello');
})
.then(result => result)
.catch(e => e);

const p2 = new Promise((resolve, reject) => {
  throw new Error('报错了');
})
.then(result => result)
.catch(e => e);

Promise.all([p1, p2])
.then(result => console.log(result))
.catch(e => console.log(e));
// ["hello", Error: 报错了]

如果p2没有自己的catch方法,就会调用Promise.all()catch方法

const p1 = new Promise((resolve, reject) => {
  resolve('hello');
})
.then(result => result);

const p2 = new Promise((resolve, reject) => {
  throw new Error('报错了');
})
.then(result => result);

Promise.all([p1, p2])
.then(result => console.log(result))
.catch(e => console.log(e));
// Error: 报错了
race()

Promise.race()方法同样是将多个 Promise 实例,包装成一个新的 Promise 实例

const p = Promise.race([p1, p2, p3]);

只要p1p2p3之中有一个实例率先改变状态,p的状态就跟着改变

率先改变的 Promise 实例的返回值则传递给p的回调函数

const p = Promise.race([
  fetch('/resource-that-may-take-a-while'),
  new Promise(function (resolve, reject) {
    setTimeout(() => reject(new Error('request timeout')), 5000)
  })
]);

p
.then(console.log)
.catch(console.error);
allSettled()

Promise.allSettled()方法接受一组 Promise 实例作为参数,包装成一个新的 Promise 实例

只有等到所有这些参数实例都返回结果,不管是fulfilled还是rejected,包装实例才会结束

const promises = [
  fetch('/api-1'),
  fetch('/api-2'),
  fetch('/api-3'),
];

await Promise.allSettled(promises);
removeLoadingIndicator();
resolve()

将现有对象转为 Promise 对象

Promise.resolve('foo')
// 等价于
new Promise(resolve => resolve('foo'))

参数可以分成四种情况,分别如下:

  • 参数是一个 Promise 实例,promise.resolve将不做任何修改、原封不动地返回这个实例
  • 参数是一个thenable对象,promise.resolve会将这个对象转为 Promise 对象,然后就立即执行thenable对象的then()方法
  • 参数不是具有then()方法的对象,或根本就不是对象,Promise.resolve()会返回一个新的 Promise 对象,状态为resolved
  • 没有参数时,直接返回一个resolved状态的 Promise 对象
reject()
Promise.reject(reason)`方法也会返回一个新的 Promise 实例,该实例的状态为`rejected
const p = Promise.reject('出错了');
// 等同于
const p = new Promise((resolve, reject) => reject('出错了'))

p.then(null, function (s) {
  console.log(s)
});
// 出错了

Promise.reject()方法的参数,会原封不动地变成后续方法的参数

Promise.reject('出错了')
.catch(e => {
  console.log(e === '出错了')
})
// true

三、使用场景

将图片的加载写成一个Promise,一旦加载完成,Promise的状态就发生变化

const preloadImage = function (path) {
  return new Promise(function (resolve, reject) {
    const image = new Image();
    image.onload  = resolve;
    image.onerror = reject;
    image.src = path;
  });
};

通过链式操作,将多个渲染数据分别给个then,让其各司其职。或当下个异步请求依赖上个请求结果的时候,我们也能够通过链式操作友好解决问题

// 各司其职
getInfo().then(res=>{
    let { bannerList } = res
    //渲染轮播图
    console.log(bannerList)
    return res
}).then(res=>{
    
    let { storeList } = res
    //渲染店铺列表
    console.log(storeList)
    return res
}).then(res=>{
    let { categoryList } = res
    console.log(categoryList)
    //渲染分类列表
    return res
})

通过all()实现多个请求合并在一起,汇总所有请求结果,只需设置一个loading即可

function initLoad(){
    // loading.show() //加载loading
    Promise.all([getBannerList(),getStoreList(),getCategoryList()]).then(res=>{
        console.log(res)
        loading.hide() //关闭loading
    }).catch(err=>{
        console.log(err)
        loading.hide()//关闭loading
    })
}
//数据初始化    
initLoad()

通过race可以设置图片请求超时

//请求某个图片资源
function requestImg(){
    var p = new Promise(function(resolve, reject){
        var img = new Image();
        img.onload = function(){
           resolve(img);
        }
        //img.src = "https://b-gold-cdn.xitu.io/v3/static/img/logo.a7995ad.svg"; 正确的
        img.src = "https://b-gold-cdn.xitu.io/v3/static/img/logo.a7995ad.svg1";
    });
    return p;
}

//延时函数,用于给请求计时
function timeout(){
    var p = new Promise(function(resolve, reject){
        setTimeout(function(){
            reject('图片请求超时');
        }, 5000);
    });
    return p;
}

Promise
.race([requestImg(), timeout()])
.then(function(results){
    console.log(results);
})
.catch(function(reason){
    console.log(reason);
});

♥︎ ♥︎ ♥︎ ♥︎ ♥︎ 怎么理解ES6中 Generator的?使用场景?

Generator 函数是 ES6 提供的一种异步编程解决方案,语法行为与传统函数完全不同

回顾下上文提到的解决异步的手段:

  • 回调函数
  • promise

那么,上文我们提到promsie已经是一种比较流行的解决异步方案,那么为什么还出现Generator?甚至async/await呢?

该问题我们留在后面再进行分析,下面先认识下Generator

Generator函数

执行 Generator 函数会返回一个遍历器对象,可以依次遍历 Generator 函数内部的每一个状态

形式上,Generator 函数是一个普通函数,但是有两个特征:

  • function关键字与函数名之间有一个星号
  • 函数体内部使用yield表达式,定义不同的内部状态
function* helloWorldGenerator() {
  yield 'hello';
  yield 'world';
  return 'ending';
}

二、使用

Generator 函数会返回一个遍历器对象,即具有Symbol.iterator属性,并且返回给自己

function* gen(){
  // some code
}

var g = gen();

g[Symbol.iterator]() === g
// true

通过yield关键字可以暂停generator函数返回的遍历器对象的状态

function* helloWorldGenerator() {
  yield 'hello';
  yield 'world';
  return 'ending';
}
var hw = helloWorldGenerator();

上述存在三个状态:helloworldreturn

通过next方法才会遍历到下一个内部状态,其运行逻辑如下:

  • 遇到yield表达式,就暂停执行后面的操作,并将紧跟在yield后面的那个表达式的值,作为返回的对象的value属性值。
  • 下一次调用next方法时,再继续往下执行,直到遇到下一个yield表达式
  • 如果没有再遇到新的yield表达式,就一直运行到函数结束,直到return语句为止,并将return语句后面的表达式的值,作为返回的对象的value属性值。
  • 如果该函数没有return语句,则返回的对象的value属性值为undefined
hw.next()
// { value: 'hello', done: false }

hw.next()
// { value: 'world', done: false }

hw.next()
// { value: 'ending', done: true }

hw.next()
// { value: undefined, done: true }

done用来判断是否存在下个状态,value对应状态值

yield`表达式本身没有返回值,或者说总是返回`undefined

通过调用next方法可以带一个参数,该参数就会被当作上一个yield表达式的返回值

function* foo(x) {
  var y = 2 * (yield (x + 1));
  var z = yield (y / 3);
  return (x + y + z);
}

var a = foo(5);
a.next() // Object{value:6, done:false}
a.next() // Object{value:NaN, done:false}
a.next() // Object{value:NaN, done:true}

var b = foo(5);
b.next() // { value:6, done:false }
b.next(12) // { value:8, done:false }
b.next(13) // { value:42, done:true }

正因为Generator 函数返回Iterator对象,因此我们还可以通过for...of进行遍历

function* foo() {
  yield 1;
  yield 2;
  yield 3;
  yield 4;
  yield 5;
  return 6;
}

for (let v of foo()) {
  console.log(v);
}
// 1 2 3 4 5

原生对象没有遍历接口,通过Generator 函数为它加上这个接口,就能使用for...of进行遍历了

function* objectEntries(obj) {
  let propKeys = Reflect.ownKeys(obj);

  for (let propKey of propKeys) {
    yield [propKey, obj[propKey]];
  }
}

let jane = { first: 'Jane', last: 'Doe' };

for (let [key, value] of objectEntries(jane)) {
  console.log(`${key}: ${value}`);
}
// first: Jane
// last: Doe

三、异步解决方案

回顾之前展开异步解决的方案:

  • 回调函数
  • Promise 对象
  • generator 函数
  • async/await

这里通过文件读取案例,将几种解决异步的方案进行一个比较:

回调函数

所谓回调函数,就是把任务的第二段单独写在一个函数里面,等到重新执行这个任务的时候,再调用这个函数

fs.readFile('/etc/fstab', function (err, data) {
  if (err) throw err;
  console.log(data);
  fs.readFile('/etc/shells', function (err, data) {
    if (err) throw err;
    console.log(data);
  });
});

readFile函数的第三个参数,就是回调函数,等到操作系统返回了/etc/passwd这个文件以后,回调函数才会执行

Promise

Promise就是为了解决回调地狱而产生的,将回调函数的嵌套,改成链式调用

const fs = require('fs');

const readFile = function (fileName) {
  return new Promise(function (resolve, reject) {
    fs.readFile(fileName, function(error, data) {
      if (error) return reject(error);
      resolve(data);
    });
  });
};


readFile('/etc/fstab').then(data =>{
    console.log(data)
    return readFile('/etc/shells')
}).then(data => {
    console.log(data)
})

这种链式操作形式,使异步任务的两段执行更清楚了,但是也存在了很明显的问题,代码变得冗杂了,语义化并不强

generator

yield表达式可以暂停函数执行,next方法用于恢复函数执行,这使得Generator函数非常适合将异步任务同步化

const gen = function* () {
  const f1 = yield readFile('/etc/fstab');
  const f2 = yield readFile('/etc/shells');
  console.log(f1.toString());
  console.log(f2.toString());
};
async/await

将上面Generator函数改成async/await形式,更为简洁,语义化更强了

const asyncReadFile = async function () {
  const f1 = await readFile('/etc/fstab');
  const f2 = await readFile('/etc/shells');
  console.log(f1.toString());
  console.log(f2.toString());
};
区别:

通过上述代码进行分析,将promiseGeneratorasync/await进行比较:

  • promiseasync/await是专门用于处理异步操作的
  • Generator并不是为异步而设计出来的,它还有其他功能(对象迭代、控制输出、部署Interator接口…)
  • promise编写代码相比Generatorasync更为复杂化,且可读性也稍差
  • Generatorasync需要与promise对象搭配处理异步情况
  • async实质是Generator的语法糖,相当于会自动执行Generator函数
  • async使用上更为简洁,将异步代码以同步的形式进行编写,是处理异步编程的最终方案

四、使用场景

Generator是异步解决的一种方案,最大特点则是将异步操作同步化表达出来

function* loadUI() {
  showLoadingScreen();
  yield loadUIDataAsynchronously();
  hideLoadingScreen();
}
var loader = loadUI();
// 加载UI
loader.next()

// 卸载UI
loader.next()

包括redux-saga 中间件也充分利用了Generator特性

import { call, put, takeEvery, takeLatest } from 'redux-saga/effects'
import Api from '...'

function* fetchUser(action) {
   try {
      const user = yield call(Api.fetchUser, action.payload.userId);
      yield put({type: "USER_FETCH_SUCCEEDED", user: user});
   } catch (e) {
      yield put({type: "USER_FETCH_FAILED", message: e.message});
   }
}

function* mySaga() {
  yield takeEvery("USER_FETCH_REQUESTED", fetchUser);
}

function* mySaga() {
  yield takeLatest("USER_FETCH_REQUESTED", fetchUser);
}

export default mySaga;

还能利用Generator函数,在对象上实现Iterator接口

function* iterEntries(obj) {
  let keys = Object.keys(obj);
  for (let i=0; i < keys.length; i++) {
    let key = keys[i];
    yield [key, obj[key]];
  }
}

let myObj = { foo: 3, bar: 7 };

for (let [key, value] of iterEntries(myObj)) {
  console.log(key, value);
}

// foo 3
// bar 7

♥︎ ♥︎ ♥︎ ♥︎ ♥︎ 怎么理解ES6中Proxy的?使用场景?

定义: 用于定义基本操作的自定义行为

本质: 修改的是程序默认形为,就形同于在编程语言层面上做修改,属于元编程(meta programming)

元编程(Metaprogramming,又译超编程,是指某类计算机程序的编写,这类计算机程序编写或者操纵其它程序(或者自身)作为它们的数据,或者在运行时完成部分本应在编译时完成的工作

一段代码来理解

#!/bin/bash
# metaprogram
echo '#!/bin/bash' >program
for ((I=1; I<=1024; I++)) do
    echo "echo $I" >>program
done
chmod +x program

这段程序每执行一次能帮我们生成一个名为program的文件,文件内容为1024行echo,如果我们手动来写1024行代码,效率显然低效

  • 元编程优点:与手工编写全部代码相比,程序员可以获得更高的工作效率,或者给与程序更大的灵活度去处理新的情形而无需重新编译

Proxy 亦是如此,用于创建一个对象的代理,从而实现基本操作的拦截和自定义(如属性查找、赋值、枚举、函数调用等)

二、用法

Proxy为 构造函数,用来生成 Proxy 实例

var proxy = new Proxy(target, handler)

参数

target表示所要拦截的目标对象(任何类型的对象,包括原生数组,函数,甚至另一个代理))

handler通常以函数作为属性的对象,各属性中的函数分别定义了在执行各种操作时代理 p 的行为

handler解析

关于handler拦截属性,有如下:

  • get(target,propKey,receiver):拦截对象属性的读取
  • set(target,propKey,value,receiver):拦截对象属性的设置
  • has(target,propKey):拦截propKey in proxy的操作,返回一个布尔值
  • deleteProperty(target,propKey):拦截delete proxy[propKey]的操作,返回一个布尔值
  • ownKeys(target):拦截Object.keys(proxy)for...in等循环,返回一个数组
  • getOwnPropertyDescriptor(target, propKey):拦截Object.getOwnPropertyDescriptor(proxy, propKey),返回属性的描述对象
  • defineProperty(target, propKey, propDesc):拦截Object.defineProperty(proxy, propKey, propDesc),返回一个布尔值
  • preventExtensions(target):拦截Object.preventExtensions(proxy),返回一个布尔值
  • getPrototypeOf(target):拦截Object.getPrototypeOf(proxy),返回一个对象
  • isExtensible(target):拦截Object.isExtensible(proxy),返回一个布尔值
  • setPrototypeOf(target, proto):拦截Object.setPrototypeOf(proxy, proto),返回一个布尔值
  • apply(target, object, args):拦截 Proxy 实例作为函数调用的操作
  • construct(target, args):拦截 Proxy 实例作为构造函数调用的操作

Reflect

若需要在Proxy内部调用对象的默认行为,建议使用Reflect,其是ES6中操作对象而提供的新 API

基本特点:

  • 只要Proxy对象具有的代理方法,Reflect对象全部具有,以静态方法的形式存在
  • 修改某些Object方法的返回结果,让其变得更合理(定义不存在属性行为的时候不报错而是返回false
  • Object操作都变成函数行为

下面我们介绍proxy几种用法:

get()

get接受三个参数,依次为目标对象、属性名和 proxy 实例本身,最后一个参数可选

var person = {
  name: "张三"
};

var proxy = new Proxy(person, {
  get: function(target, propKey) {
    return Reflect.get(target,propKey)
  }
});

proxy.name // "张三"

get能够对数组增删改查进行拦截,下面是试下你数组读取负数的索引

function createArray(...elements) {
  let handler = {
    get(target, propKey, receiver) {
      let index = Number(propKey);
      if (index < 0) {
        propKey = String(target.length + index);
      }
      return Reflect.get(target, propKey, receiver);
    }
  };

  let target = [];
  target.push(...elements);
  return new Proxy(target, handler);
}

let arr = createArray('a', 'b', 'c');
arr[-1] // c

注意:如果一个属性不可配置(configurable)且不可写(writable),则 Proxy 不能修改该属性,否则会报错

const target = Object.defineProperties({}, {
  foo: {
    value: 123,
    writable: false,
    configurable: false
  },
});

const handler = {
  get(target, propKey) {
    return 'abc';
  }
};

const proxy = new Proxy(target, handler);

proxy.foo
// TypeError: Invariant check failed
set()

set方法用来拦截某个属性的赋值操作,可以接受四个参数,依次为目标对象、属性名、属性值和 Proxy 实例本身

假定Person对象有一个age属性,该属性应该是一个不大于 200 的整数,那么可以使用Proxy保证age的属性值符合要求

let validator = {
  set: function(obj, prop, value) {
    if (prop === 'age') {
      if (!Number.isInteger(value)) {
        throw new TypeError('The age is not an integer');
      }
      if (value > 200) {
        throw new RangeError('The age seems invalid');
      }
    }

    // 对于满足条件的 age 属性以及其他属性,直接保存
    obj[prop] = value;
  }
};

let person = new Proxy({}, validator);

person.age = 100;

person.age // 100
person.age = 'young' // 报错
person.age = 300 // 报错

如果目标对象自身的某个属性,不可写且不可配置,那么set方法将不起作用

const obj = {};
Object.defineProperty(obj, 'foo', {
  value: 'bar',
  writable: false,
});

const handler = {
  set: function(obj, prop, value, receiver) {
    obj[prop] = 'baz';
  }
};

const proxy = new Proxy(obj, handler);
proxy.foo = 'baz';
proxy.foo // "bar"

注意,严格模式下,set代理如果没有返回true,就会报错

'use strict';
const handler = {
  set: function(obj, prop, value, receiver) {
    obj[prop] = receiver;
    // 无论有没有下面这一行,都会报错
    return false;
  }
};
const proxy = new Proxy({}, handler);
proxy.foo = 'bar';
// TypeError: 'set' on proxy: trap returned falsish for property 'foo'
deleteProperty()

deleteProperty方法用于拦截delete操作,如果这个方法抛出错误或者返回false,当前属性就无法被delete命令删除

var handler = {
  deleteProperty (target, key) {
    invariant(key, 'delete');
    Reflect.deleteProperty(target,key)
    return true;
  }
};
function invariant (key, action) {
  if (key[0] === '_') {
    throw new Error(`无法删除私有属性`);
  }
}

var target = { _prop: 'foo' };
var proxy = new Proxy(target, handler);
delete proxy._prop
// Error: 无法删除私有属性

注意,目标对象自身的不可配置(configurable)的属性,不能被deleteProperty方法删除,否则报错

取消代理
Proxy.revocable(target, handler);

三、使用场景

Proxy其功能非常类似于设计模式中的代理模式,常用功能如下:

  • 拦截和监视外部对对象的访问
  • 降低函数或类的复杂度
  • 在复杂操作前对操作进行校验或对所需资源进行管理

使用 Proxy 保障数据类型的准确性

let numericDataStore = { count: 0, amount: 1234, total: 14 };
numericDataStore = new Proxy(numericDataStore, {
    set(target, key, value, proxy) {
        if (typeof value !== 'number') {
            throw Error("属性只能是number类型");
        }
        return Reflect.set(target, key, value, proxy);
    }
});

numericDataStore.count = "foo"
// Error: 属性只能是number类型

numericDataStore.count = 333
// 赋值成功

声明了一个私有的 apiKey,便于 api 这个对象内部的方法调用,但不希望从外部也能够访问 api._apiKey

let api = {
    _apiKey: '123abc456def',
    getUsers: function(){ },
    getUser: function(userId){ },
    setUser: function(userId, config){ }
};
const RESTRICTED = ['_apiKey'];
api = new Proxy(api, {
    get(target, key, proxy) {
        if(RESTRICTED.indexOf(key) > -1) {
            throw Error(`${key} 不可访问.`);
        } return Reflect.get(target, key, proxy);
    },
    set(target, key, value, proxy) {
        if(RESTRICTED.indexOf(key) > -1) {
            throw Error(`${key} 不可修改`);
        } return Reflect.get(target, key, value, proxy);
    }
});

console.log(api._apiKey)
api._apiKey = '987654321'
// 上述都抛出错误

还能通过使用Proxy实现观察者模式

观察者模式(Observer mode)指的是函数自动观察数据对象,一旦对象有变化,函数就会自动执行

observable函数返回一个原始对象的 Proxy 代理,拦截赋值操作,触发充当观察者的各个函数

const queuedObservers = new Set();

const observe = fn => queuedObservers.add(fn);
const observable = obj => new Proxy(obj, {set});

function set(target, key, value, receiver) {
  const result = Reflect.set(target, key, value, receiver);
  queuedObservers.forEach(observer => observer());
  return result;
}

观察者函数都放进Set集合,当修改obj的值,在会set函数中拦截,自动执行Set所有的观察者

♥︎ ♥︎ ♥︎ ♥︎ ♥︎ 怎么理解ES6中Module的?使用场景?

一、介绍

模块,(Module),是能够单独命名并独立地完成一定功能的程序语句集合(即程序代码和数据结构的集合体)。

两个基本的特征:外部特征和内部

  • 外部特征是指模块跟外部环境联系的接口(即其他模块或程序调用该模块的方式,包括有输入输出参数、引用的全局变量)和模块的功能
  • 内部特征是指模块的内部环境具有的特点(即该模块的局部数据和程序代码)
为什么需要模块化
  • 代码抽象
  • 代码封装
  • 代码复用
  • 依赖管理

如果没有模块化,我们代码会怎样?

  • 变量和方法不容易维护,容易污染全局作用域
  • 加载资源的方式通过script标签从上到下。
  • 依赖的环境主观逻辑偏重,代码较多就会比较复杂。
  • 大型项目资源难以维护,特别是多人合作的情况下,资源的引入会让人奔溃

因此,需要一种将JavaScript程序模块化的机制,如

  • CommonJs (典型代表:node.js早期)
  • AMD (典型代表:require.js)
  • CMD (典型代表:sea.js)
AMD

Asynchronous ModuleDefinition(AMD),异步模块定义,采用异步方式加载模块。所有依赖模块的语句,都定义在一个回调函数中,等到模块加载完成之后,这个回调函数才会运行

代表库为require.js

/** main.js 入口文件/主模块 **/
// 首先用config()指定各模块路径和引用名
require.config({
  baseUrl: "js/lib",
  paths: {
    "jquery": "jquery.min",  //实际路径为js/lib/jquery.min.js
    "underscore": "underscore.min",
  }
});
// 执行基本操作
require(["jquery","underscore"],function($,_){
  // some code here
});
CommonJs

CommonJS 是一套 Javascript 模块规范,用于服务端

// a.js
module.exports={ foo , bar}

// b.js
const { foo,bar } = require('./a.js')

其有如下特点:

  • 所有代码都运行在模块作用域,不会污染全局作用域
  • 模块是同步加载的,即只有加载完成,才能执行后面的操作
  • 模块在首次执行后就会缓存,再次加载只返回缓存结果,如果想要再次执行,可清除缓存
  • require返回的值是被输出的值的拷贝,模块内部的变化也不会影响这个值

既然存在了AMD以及CommonJs机制,ES6Module又有什么不一样?

ES6 在语言标准的层面上,实现了Module,即模块功能,完全可以取代 CommonJS AMD 规范,成为浏览器和服务器通用的模块解决方案

CommonJS AMD 模块,都只能在运行时确定这些东西。比如,CommonJS 模块就是对象,输入时必须查找对象属性

// CommonJS模块
let { stat, exists, readfile } = require('fs');

// 等同于
let _fs = require('fs');
let stat = _fs.stat;
let exists = _fs.exists;
let readfile = _fs.readfile;

ES6设计思想是尽量的静态化,使得编译时就能确定模块的依赖关系,以及输入和输出的变量

// ES6模块
import { stat, exists, readFile } from 'fs';

上述代码,只加载3个方法,其他方法不加载,即 ES6 可以在编译时就完成模块加载

由于编译加载,使得静态分析成为可能。包括现在流行的typeScript也是依靠静态分析实现功能

二、使用

ES6模块内部自动采用了严格模式,这里就不展开严格模式的限制,毕竟这是ES5之前就已经规定好

模块功能主要由两个命令构成:

  • export:用于规定模块的对外接口
  • import:用于输入其他模块提供的功能
export

一个模块就是一个独立的文件,该文件内部的所有变量,外部无法获取。如果你希望外部能够读取模块内部的某个变量,就必须使用export关键字输出该变量

// profile.js
export var firstName = 'Michael';
export var lastName = 'Jackson';
export var year = 1958;

或 
// 建议使用下面写法,这样能瞬间确定输出了哪些变量
var firstName = 'Michael';
var lastName = 'Jackson';
var year = 1958;

export { firstName, lastName, year };

输出函数或类

export function multiply(x, y) {
  return x * y;
};

通过as可以进行输出变量的重命名

function v1() { ... }
function v2() { ... }

export {
  v1 as streamV1,
  v2 as streamV2,
  v2 as streamLatestVersion
};
import

使用export命令定义了模块的对外接口以后,其他 JS 文件就可以通过import命令加载这个模块

// main.js
import { firstName, lastName, year } from './profile.js';

function setName(element) {
  element.textContent = firstName + ' ' + lastName;
}

同样如果想要输入变量起别名,通过as关键字

import { lastName as surname } from './profile.js';

当加载整个模块的时候,需要用到星号*

// circle.js
export function area(radius) {
  return Math.PI * radius * radius;
}

export function circumference(radius) {
  return 2 * Math.PI * radius;
}

// main.js
import * as circle from './circle';
console.log(circle)   // {area:area,circumference:circumference}

输入的变量都是只读的,不允许修改,但是如果是对象,允许修改属性

import {a} from './xxx.js'

a.foo = 'hello'; // 合法操作
a = {}; // Syntax Error : 'a' is read-only;

不过建议即使能修改,但我们不建议。因为修改之后,我们很难差错

import后面我们常接着from关键字,from指定模块文件的位置,可以是相对路径,也可以是绝对路径

import { a } from './a';

如果只有一个模块名,需要有配置文件,告诉引擎模块的位置

import { myMethod } from 'util';

在编译阶段,import会提升到整个模块的头部,首先执行

foo();

import { foo } from 'my_module';

多次重复执行同样的导入,只会执行一次

import 'lodash';
import 'lodash';

上面的情况,大家都能看到用户在导入模块的时候,需要知道加载的变量名和函数,否则无法加载

如果不需要知道变量名或函数就完成加载,就要用到export default命令,为模块指定默认输出

// export-default.js
export default function () {
    console.log('foo');
}

加载该模块的时候,import命令可以为该函数指定任意名字

// import-default.js
import customName from './export-default';
customName(); // 'foo'

动态加载

允许您仅在需要时动态加载模块,而不必预先加载所有模块,这存在明显的性能优势

这个新功能允许您将import()作为函数调用,将其作为参数传递给模块的路径。 它返回一个 promise,它用一个模块对象来实现,让你可以访问该对象的导出

import('/modules/myModule.mjs')
  .then((module) => {
    // Do something with the module.
  });

复合写法

如果在一个模块之中,先输入后输出同一个模块,import语句可以与export语句写在一起

export { foo, bar } from 'my_module';

// 可以简单理解为
import { foo, bar } from 'my_module';
export { foo, bar };

同理能够搭配as*搭配使用

三、使用场景

如今,ES6模块化已经深入我们日常项目开发中,像vuereact项目搭建项目,组件化开发处处可见,其也是依赖模块化实现

vue组件

<template>
  <div class="App">
      组件化开发 ---- 模块化
  </div>
</template>

<script>
export default {
  name: 'HelloWorld',
  props: {
    msg: String
  }
}
</script>

react组件

function App() {
  return (
    <div className="App">
        组件化开发 ---- 模块化
    </div>
  );
}

export default App;

包括完成一些复杂应用的时候,我们也可以拆分成各个模块

♥︎ ♥︎ ♥︎ ♥︎ ♥︎ 怎么理解ES6中 Decorator 的?使用场景?

一、介绍

Decorator,即装饰器,从名字上很容易让我们联想到装饰者模式

简单来讲,装饰者模式就是一种在不改变原类和使用继承的情况下,动态地扩展对象功能的设计理论。

ES6Decorator功能亦如此,其本质也不是什么高大上的结构,就是一个普通的函数,用于扩展类属性和类方法

这里定义一个士兵,这时候他什么装备都没有

class soldier{ 
}

定义一个得到 AK 装备的函数,即装饰器

function strong(target){
    target.AK = true
}

使用该装饰器对士兵进行增强

@strong
class soldier{
}

这时候士兵就有武器了

soldier.AK // true

上述代码虽然简单,但也能够清晰看到了使用Decorator两大优点:

  • 代码可读性变强了,装饰器命名相当于一个注释
  • 在不改变原有代码情况下,对原来功能进行扩展

二、用法

Docorator修饰对象为下面两种:

  • 类的装饰
  • 类属性的装饰
类的装饰

当对类本身进行装饰的时候,能够接受一个参数,即类本身

将装饰器行为进行分解,大家能够有个更深入的了解

@decorator
class A {}

// 等同于

class A {}
A = decorator(A) || A;

下面@testable就是一个装饰器,target就是传入的类,即MyTestableClass,实现了为类添加静态属性

@testable
class MyTestableClass {
  // ...
}

function testable(target) {
  target.isTestable = true;
}

MyTestableClass.isTestable // true

如果想要传递参数,可以在装饰器外层再封装一层函数

function testable(isTestable) {
  return function(target) {
    target.isTestable = isTestable;
  }
}

@testable(true)
class MyTestableClass {}
MyTestableClass.isTestable // true

@testable(false)
class MyClass {}
MyClass.isTestable // false
类属性的装饰

当对类属性进行装饰的时候,能够接受三个参数:

  • 类的原型对象
  • 需要装饰的属性名
  • 装饰属性名的描述对象

首先定义一个readonly装饰器

function readonly(target, name, descriptor){
  descriptor.writable = false; // 将可写属性设为false
  return descriptor;
}

使用readonly装饰类的name方法

class Person {
  @readonly
  name() { return `${this.first} ${this.last}` }
}

相当于以下调用

readonly(Person.prototype, 'name', descriptor);

如果一个方法有多个装饰器,就像洋葱一样,先从外到内进入,再由内到外执行

function dec(id){
    console.log('evaluated', id);
    return (target, property, descriptor) =>console.log('executed', id);
}

class Example {
    @dec(1)
    @dec(2)
    method(){}
}
// evaluated 1
// evaluated 2
// executed 2
// executed 1

外层装饰器@dec(1)先进入,但是内层装饰器@dec(2)先执行

注意

装饰器不能用于修饰函数,因为函数存在变量声明情况

var counter = 0;

var add = function () {
  counter++;
};

@add
function foo() {
}

编译阶段,变成下面

var counter;
var add;

@add
function foo() {
}

counter = 0;

add = function () {
  counter++;
};

意图是执行后counter等于 1,但是实际上结果是counter等于 0

三、使用场景

基于Decorator强大的作用,我们能够完成各种场景的需求,下面简单列举几种:

使用react-redux的时候,如果写成下面这种形式,既不雅观也很麻烦

class MyReactComponent extends React.Component {}

export default connect(mapStateToProps, mapDispatchToProps)(MyReactComponent);

通过装饰器就变得简洁多了

@connect(mapStateToProps, mapDispatchToProps)
export default class MyReactComponent extends React.Component {}

mixins,也可以写成装饰器,让使用更为简洁了

function mixins(...list) {
  return function (target) {
    Object.assign(target.prototype, ...list);
  };
}

// 使用
const Foo = {
  foo() { console.log('foo') }
};

@mixins(Foo)
class MyClass {}

let obj = new MyClass();
obj.foo() // "foo"

下面再讲讲core-decorators.js几个常见的装饰器

@antobind

autobind装饰器使得方法中的this对象,绑定原始对象

import { autobind } from 'core-decorators';

class Person {
  @autobind
  getPerson() {
    return this;
  }
}

let person = new Person();
let getPerson = person.getPerson;

getPerson() === person;
// true
@readonly

readonly装饰器使得属性或方法不可写

import { readonly } from 'core-decorators';

class Meal {
  @readonly
  entree = 'steak';
}

var dinner = new Meal();
dinner.entree = 'salmon';
// Cannot assign to read only property 'entree' of [object Object]

@deprecate

deprecatedeprecated装饰器在控制台显示一条警告,表示该方法将废除

import { deprecate } from 'core-decorators';

class Person {
  @deprecate
  facepalm() {}

  @deprecate('功能废除了')
  facepalmHard() {}
}

let person = new Person();

person.facepalm();
// DEPRECATION Person#facepalm: This function will be removed in future versions.

person.facepalmHard();
// DEPRECATION Person#facepalmHard: 功能废除了

♥︎ ♥︎ ♥︎ ♥︎ ♥︎ Symbol数据类型

ES6引入一种新的原始数据类型为 Symbol ,表示为 独一无二 的值,用来定义独一无二的对象属性名。

Symbol的讲解

4个方面说说Symbol数据类型:

  1. Symbol的定义;
  2. Symbol作为对象属性名;
  3. Symbol使用场景;
  4. Symbol获取。

Symbol的定义

  • 一种Symbol类型可以通过使用Symbol()函数来生成;
  • Symbol()函数可以接收一个字符串作为参数

示例代码:

let s1 = Symbol('web');
let s2 = Symbol('web');
console.log(s1 === s2);
console.log(typeof s1);
console.log(typeof s2);
复制代码

chrome截图:

img

由图可知:Symbol()函数接收的参数相同,其变量的值也不同,s1和s2是Symbol类型的变量,因为变量的值不同,所以打印的结果为false。使用typeof来获取相应的类型,所以打印的结果都为symbol。

Symbol作为对象属性名

Symbol可以通过三种方式作为对象属性名。

  • 第一种:

示例代码:

let symbol = Symbol();
let a = {};
a[symbol] = 'web';

由代码可知:首先声明了一个Symbol类型的变量symbol,一个空的对象为a,通过a[symbol]给a对象赋值一个web的字符串。表示symbol作为对象属性名,web作为它的属性值。

  • 第二种:

示例代码:

let symbol = Symbol();
let a = {
    [symbol]:'web'
};

由代码可知:首先声明了一个Symbol类型的变量symbol,接着在声明对象a的同时通过[symbol]给a对象性赋值为web的字符串。

  • 第三种:

示例代码:

let symbol = Symbol();
let a = {};
Object.defineProperty(a, symbol, {value: 'web'});

由代码可知:首先声明了一个Symbol类型的变量symbol,一个空对象为a,通过Object.defineProperty()方法给a对象赋值为web的字符串。

Symbol的值作为对象属性名,是不能用点运算符的。

Symbol使用场景

一种有两种使用场景:

  1. 因为Symbol的值是均不相等的,所以Symbol类型的值作为对象属性名,不会出现重复。
  2. 代码形成强耦合的某一个具体的字符串。

Symbol获取

通过Object.getOwnPropertySymbols()方法,可以获取指定对象的所有Symbols属性名。:

参考文献:

[语音仓库]: “https://github.com/febobo/web-interview

Donate
  • Copyright: Copyright is owned by the author. For commercial reprints, please contact the author for authorization. For non-commercial reprints, please indicate the source.
  • Copyrights © 2022-2023 alan_mf
  • Visitors: | Views:

请我喝杯咖啡吧~

支付宝
微信